МУНИЦИПАЛЬНОЕ АВТОНОМНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «ЛИЦЕЙ №1» г. СЫКТЫВКАРА

«Сыктывкар» кар кытшын муниципальной юконлон администрацияса йозос велодомон веськодланін «1 №-а лицей»» Сыктывкарса муниципальной асшорлуно велодан учреждение

PACCMOTPEHO

МО учителей естественноматематического цикла протокол № 1 от 30.08.2021 г. УТВЕРЖДАЮ Директор МАОУ «Лицей №1» г. Сыктывкара Н.А. Полонская Приказ № <u>281</u> от 31.08.2021 г.

ОТЯНИЯП

педагогическим советом протокол № 1 от 31.08.2021 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОГО ПРЕДМЕТА «ИНФОРМАТИКА»

Уровень образования – основное общее Срок реализации – 3 года

Пояснительная записка

Рабочая программа по предмету «Информатика» разработана для обучения учащихся 7-9 классов МАОУ «Лицей №1» г. Сыктывкара

в соответствии с:

• Федеральным государственным образовательным стандартом основного общего образования", утвержденным приказом Министерства образования и науки Российской Федерации от 17.12.2010 N 1897 (в ред. Приказов Минобрнауки России от 29.12.2014 N 1644, от 31.12.2015 N 1577);

На основе:

• Требований к результатам освоения основной образовательной программы основного общего образования МАОУ «Лицей №1» г. Сыктывкара;

С учетом:

• Примерной основной образовательной программы основного общего образования, одобренной решением федерального учебно-методического объединения по общему образованию (протокол от 8 апреля 2015 г. № 1/15);

Данная рабочая программа конкретизирует содержание Стандарта, даёт распределение учебных часов по разделам, последовательность изучения тем и разделов с учетом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся.

При реализации РПУП такой аспект содержания модуля «Школьный урок» как побуждение обучающихся соблюдать на уроке общепринятые нормы поведения, правила общения осуществляется посредством следования правилам, вытекающим из ценностей лицея, выработка и принятие которых описаны в рабочей программе воспитания (модуль «Школьный урок»). Данные ценности вырабатываются педагогическим, ученическим и родительскими сообществами. Они ежегодно обсуждаются и обновляются. На уроке обеспечивается договор о правилах работы группы, выполнение домашних заданий и др., обеспечивается анализ учащимися их выполнения и важность их выполнения.

В рамках реализации модуля «Школьный урок» привлечение внимания обучающихся к ценностному аспекту изучаемых на уроках явлений, организация их работы с получаемой на уроке социально значимой информацией — инициирование ее обсуждения, высказывания обучающимися своего мнения по ее поводу, выработки своего отношения организуется учителем на уроке путём выделения аспекта, формирования отношения обучающихся к нему через организацию обсуждения ценности изучаемых явлений, организацию работы с социально значимой информацией. В рамках изучения тем, представленных в тематическом планировании на уроке обсуждаются вопросы, значимые для формирования позиций, отношения учащихся к ним. Ключевые вопросы, рождающие отношение, — «Зачем?», «Для чего ...?», «Может ли ...?», «Как изучение ... определило прогресс общества?». Итогом такой работы становятся ответы детей для себя: «Как я к этому отношусь?» «Как это происходит и как это касается меня и моих близких?».

Использование воспитательных возможностей содержания учебного предмета в рамках реализации модуля «Школьный урок» происходит через демонстрацию обучающимся примеров ответственного, гражданского поведения, проявления человеколюбия и добросердечности, через подбор соответствующих текстов для чтения, задач для решения, проблемных ситуаций для обсуждения в классе. Данное требование выражается в чтении текстов. Тексты имеют подборку вопросов, по которым может быть организовано обсуждение с учащимися или их самостоятельные ответы. Критериями отбора являются ценности, которые в них представлены. Тексты и вопросы для обсуждения представлены в таблицах после изучаемых разделов.

Применение на уроке интерактивных форм работы в рамках реализации модуля «Школьный урок» реализуется посредством интеллектуальных игр, стимулирующих познавательную мотивацию обучающихся; дидактического театра, где полученные на уроке знания обыгрываются в театральных постановках; дискуссий, которые дают обучающимся возможность приобрести опыт ведения конструктивного диалога; групповой работы или работы в парах, которые учат обучающихся командной работе и взаимодействию с другими обучающимися. Применение на уроках интерактивных форм работы является ведущим видом организации учебной деятельности обучающихся. На уроках в соответствии с Программой формирования/развития УУД используются следующие формы совместной деятельности учащихся: мозговой штурм; дискуссия, учебный спор-диалог, конференция, совместное решение учебного кейса, совместный поиск, «Снежный ком», прием «Зигзаг» (группы по 4-5 чел изучают одну часть, эксперты по части, потом обучают других в своей группе) и др. В целях поддержки формирования культуры дискуссии практикуется проведение уроков в виде ролевых игр («Переводчики», «Сыщики», «Музей», «Квест», «Стратегия», «Мировое кафе», «Встреча миров» и др.). Включение в урок игровых процедур помогает поддержать мотивацию обучающихся к получению знаний, налаживанию позитивных межличностных отношений в классе, помогают установлению доброжелательной атмосферы во время урока.

Можно обыграть учебу ребенка в школе как игру в RPG (компьютерная ролевая игра, жанр ролевых игр). Самая важная часть игры — мотивация и награды. Процесс поощрений можно построить следующим образом: за каждую активность ребенок получает какое-то количество опыта.

Основная цель геймификации - мотивировать учащихся на своевременное выполнение заданий и стремление получать высокие результаты за выполнение заданий, не нарушать установленные правила.

Для групповой работы используются: открытые задания, которые не имеют простого ответа, задействуют сложные формы мышления; задания, которые требуют выполнения большого объема работы; задания, которые требуют разнообразных знаний и умений, всей совокупностью которых не владеет ни один из детей индивидуально, но владеет группа в целом; задания на развитие творческого мышления, где требуется генерировать максимальное количество оригинальных идей; задания, требующие принятия решений, непосредственно касающихся будущей деятельности данной группы.

В рамках реализации модуля «Школьный урок» и программы «Наставничество» организуется шефство мотивированных и эрудированных обучающихся над их слабоуспевающими одноклассниками. Такое шефство даёт обучающимся социально значимый опыт сотрудничества и взаимной помощи. Приемы организации шефства — это задания на помощь и взаимовыручку, например, при подготовке к зачету по теории ученикам предлагается разделиться на пары и помочь друг другу понять теоретический материал. Это группы развития: один из учеников учит, объясняет другим материал и то, как выполнять задания, при ответах учащихся ученик-наставник имеет право взять минуту помощи команды и пояснить отвечающему, где он ошибается.

Инициирование и поддержка исследовательской деятельности обучающихся в рамках реализации ими индивидуальных и групповых исследовательских проектов даёт обучающимся возможность приобрести навык самостоятельного решения теоретической проблемы, навык генерирования и оформления собственных идей, навык уважительного отношения к чужим идеям, оформленным в работах других исследователей, навык публичного выступления перед аудиторией, аргументирования и отстаивания своей точки зрения.

<u> 7 класс</u>	<u>8 класс</u>	<u>9 класс</u>
Поздравляем ветеранов	<i>Непозиционные системы</i>	Создание своего сайта
	счисления.	
Компьютер будущего	Создание тестовых про-	Рисуем в электронных таб-
	<u>грамм</u>	<u>лицах</u>
История развития компью-		
<u>терной техники</u>		

1. Планируемые результаты освоения учебного предмета «Информатика»

Планируемые результаты опираются на **ведущие целевые установки,** отражающие основной, сущностный вклад каждой изучаемой программы в развитие личности обучающихся, их способностей.

В структуре планируемых результатов выделяется следующие группы:

- **1.** Личностные результаты программы представлены в соответствии с группой личностных результатов и раскрывают и детализируют основные направленности этих результатов. Оценка достижения этой группы планируемых результатов ведется в ходе процедур, допускающих предоставление и использование исключительно неперсонифицированной информации.
- **2. Метапредметные результаты освоения программы** представлены в соответствии с подгруппами универсальных учебных действий, раскрывают и детализируют основные направленности метапредметных результатов.
- **3. Предметные результаты освоения программы** представлены в соответствии с группами результатов учебных предметов, раскрывают и детализируют их.

Предметные результаты приводятся в блоках «Выпускник научится» и «Выпускник получит возможность научиться».

Планируемые результаты, отнесенные к блоку «Выпускник научится», ориентируют пользователя в том, достижение какого уровня освоения учебных действий с изучаемым опорным учебным материалом ожидается от выпускника. Критериями отбора результатов служат их значимость для решения основных задач образования на данном уровне и необходимость для последующего обучения, а также потенциальная возможность их достижения большинством обучающихся. Иными словами, в этот блок включается такой круг учебных задач, построенных на опорном учебном материале, овладение которыми принципиально необходимо для успешного обучения и социализации и которые могут быть освоены всеми обучающихся.

Достижение планируемых результатов, отнесенных к блоку «Выпускник научится», выносится на итоговое оценивание, которое может осуществляться как в ходе обучения (с помощью накопленной оценки или портфеля индивидуальных достижений), так и в конце обучения, в том числе в форме государственной итоговой аттестации. Оценка достижения планируемых результатов этого блока на уровне ведется с помощью заданий базового уровня, а на уровне действий, составляющих зону ближайшего развития большинства обучающихся, — с помощью заданий повышенного уровня. Успешное выполнение обучающимися заданий базового уровня служит единственным основанием для положительного решения вопроса о возможности перехода на следующий уровень обучения.

В блоке «Выпускник получит возможность научиться» приводятся планируемые результаты, характеризующие систему учебных действий в отношении знаний, умений, навыков, расширяющих и углубляющих понимание опорного учебного материала или выступающих как пропедевтика для дальнейшего изучения данного предмета. Уровень достижений, соответствующий планируемым результатам этого блока, могут продемонстрировать отдельные мотивированные и способные обучающиеся. В повседневной практике преподавания цели данного блока не отрабатываются со всеми без исключения обучающимися

как в силу повышенной сложности учебных действий, так и в силу повышенной сложности учебного материала и/или его пропедевтического характера на данном уровне обучения. Оценка достижения планируемых результатов ведется преимущественно в ходе процедур, допускающих предоставление и использование исключительно неперсонифицированной информации. Соответствующая группа результатов в тексте выделена курсивом.

Задания, ориентированные на оценку достижения планируемых результатов из блока «Выпускник получит возможность научиться», могут включаться в материалы итогового контроля блока «Выпускник научится». Основные цели такого включения — предоставить возможность обучающимся продемонстрировать овладение более высоким (по сравнению с базовым) уровнем достижений и выявить динамику роста численности наиболее подготовленных обучающихся. При этом невыполнение обучающимися заданий, с помощью которых ведется оценка достижения планируемых результатов данного блока, не является препятствием для перехода на следующий уровень обучения. В ряде случаев достижение планируемых результатов этого блока целесообразно вести в ходе текущего и промежуточного оценивания, а полученные результаты фиксировать в виде накопленной оценки (например, в форме портфеля достижений) и учитывать при определении итоговой оценки.

Подобная структура представления планируемых результатов подчеркивает тот факт, что при организации образовательного процесса, направленного на реализацию и достижение планируемых результатов, от учителя требуется использование таких педаго-

гических технологий, которые основаны на дифференциации требований к подготовке обучающихся.

Личностные результаты освоения программы:

- 1. Российская гражданская идентичность (патриотизм, уважение к Отечеству, к прошлому и настоящему многонационального народа России, чувство ответственности и долга перед Родиной, идентификация себя в качестве гражданина России, субъективная значимость использования русского языка и языков народов России, осознание и ощущение личностной сопричастности судьбе российского народа). Осознание этнической принадлежности, знание истории, языка, культуры своего народа, своего края, основ культурного наследия народов России и человечества (идентичность человека с российской многонациональной культурой, сопричастность истории народов и государств, находившихся на территории современной России); интериоризация гуманистических, демократических и традиционных ценностей многонационального российского общества. Осознанное, уважительное и доброжелательное отношение к истории, культуре, религии, традициям, языкам, ценностям народов России и народов мира.
- 2. Готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию; готовность и способность осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учетом устойчивых познавательных интересов.
- 3. Развитое моральное сознание и компетентность в решении моральных проблем на основе личностного выбора, формирование нравственных чувств и нравственного поведения, осознанного и ответственного отношения к собственным поступкам (способность к нравственному самосовершенствованию; веротерпимость, уважительное отношение к религиозным чувствам, взглядам людей или их отсутствию; знание основных норм морали, нравственных, духовных идеалов, хранимых в культурных традициях народов России, готовность на их основе к сознательному самоограничению в поступках, поведении, расточительном потребительстве; сформированность представлений об основах светской этики, культуры традиционных религий, их роли в развитии культуры и истории России и человечества, в становлении гражданского общества и российской государственности; понимание значения нравственности, веры и религии в жизни человека, семьи и общества). Сформированность ответственного отношения к учению; уважительного отношения к труду, наличие опыта участия в социально значимом труде. Осознание значения семьи в жизни человека и общества, принятие ценности семейной жизни, уважительное и заботливое отношение к членам своей семьи.
- 4. Сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, учитывающего социальное, культурное, языковое, духовное многообразие современного мира.
- 5. Осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению, культуре, языку, вере, гражданской позиции. Готовность и способность вести диалог с другими людьми и достигать в нем взаимопонимания (идентификация себя как полноправного субъекта общения, готовность к конструированию образа партнера по диалогу, готовность к конструированию образа допустимых способов диалога, готовность к конструированию процесса диалога как конвенционирования интересов, процедур, готовность и способность к ведению переговоров).

- 6. Освоенность социальных норм, правил поведения, ролей и форм социальной жизни в группах и сообществах. Участие в школьном самоуправлении и общественной жизни в пределах возрастных компетенций с учетом региональных, этнокультурных, социальных и экономических особенностей (формирование готовности к участию в процессе упорядочения социальных связей и отношений, в которые включены и которые формируют сами учащиеся; включенность в непосредственное гражданское участие, готовность участвовать в жизнедеятельности подросткового общественного объединения, продуктивно взаимодействующего с социальной средой и социальными институтами; идентификация себя в качестве субъекта социальных преобразований, освоение компетентностей в сфере организаторской деятельности; интериоризация ценностей созидательного отношения к окружающей действительности, ценностей социального творчества, ценности продуктивной организации совместной деятельности, самореализации в группе и организации, ценности «другого» как равноправного партнера, формирование компетенций анализа, проектирования, организации деятельности, рефлексии изменений, способов взаимовыгодного сотрудничества, способов реализации собственного лидерского потенциала).
- 7. Сформированность ценности здорового и безопасного образа жизни; интериоризация правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей, правил поведения на транспорте и на дорогах.
- 8. Развитость эстетического сознания через освоение художественного наследия народов России и мира, творческой деятельности эстетического характера (способность понимать художественные произведения, отражающие разные этнокультурные традиции; сформированность основ художественной культуры обучающихся как части их общей духовной культуры, как особого способа познания жизни и средства организации общения; эстетическое, эмоционально-ценностное видение окружающего мира; способность к эмоционально-ценностному освоению мира, самовыражению и ориентации в художественном и нравственном пространстве культуры; уважение к истории культуры своего Отечества, выраженной в том числе в понимании красоты человека; потребность в общении с художественными произведениями, сформированность активного отношения к традициям художественной культуры как смысловой, эстетической и личностно-значимой ценности).
- 9. Сформированность основ экологической культуры, соответствующей современному уровню экологического мышления, наличие опыта экологически ориентированной рефлексивно-оценочной и практической деятельности в жизненных ситуациях (готовность к исследованию природы, к занятиям сельскохозяйственным трудом, к художественно-эстетическому отражению природы, к занятиям туризмом, в том числе экотуризмом, к осуществлению природоохранной деятельности).

Метапредметные результаты

Метапредметные результаты, включают освоенные обучающимися межпредметные понятия и универсальные учебные действия (регулятивные, познавательные, коммуникативные).

Межпредметные понятия

Условием формирования межпредметных понятий, например таких как система, факт, закономерность, феномен, анализ, синтезявляется овладение обучающимися основами читательской компетенции, приобретение навыков работы с информацией, участие в проектной деятельности. В основной школе на всех предметах будет продолжена работа по фор-

мированию и развитию **основ читательской компетенции**. Обучающиеся овладеют чтением как средством осуществления своих дальнейших планов: продолжения образования и самообразования, осознанного планирования своего актуального и перспективного круга чтения, в том числе досугового, подготовки к трудовой и социальной деятельности. У выпускников будет сформирована потребность в систематическом чтении как средстве познания мира и себя в этом мире, гармонизации отношений человека и общества, создании образа «потребного будущего».

При изучении учебных предметов обучающиеся усовершенствуют приобретённые на первом уровне **навыки работы с информацией** и пополнят их. Они смогут работать с текстами, преобразовывать и интерпретировать содержащуюся в них информацию, в том числе:

- систематизировать, сопоставлять, анализировать, обобщать и интерпретировать информацию, содержащуюся в готовых информационных объектах;
- выделять главную и избыточную информацию, выполнять смысловое свёртывание выделенных фактов, мыслей; представлять информацию в сжатой словесной форме (в виде плана или тезисов) и в наглядно-символической форме (в виде таблиц, графических схем и диаграмм, карт понятий концептуальных диаграмм, опорных конспектов);
 - заполнять и дополнять таблицы, схемы, диаграммы, тексты.

В ходе изучения всех учебных предметов обучающиеся приобретут опыт проектной деятельности как особой формы учебной работы, способствующей воспитанию самостоятельности, инициативности, ответственности, повышению мотивации и эффективности учебной деятельности; в ходе реализации исходного замысла на практическом уровне овладеют умением выбирать адекватные стоящей задаче средства, принимать решения, в том числе и в ситуациях неопределённости. Они получат возможность развить способность к разработке нескольких вариантов решений, к поиску нестандартных решений, поиску и осуществлению наиболее приемлемого решения.

Перечень ключевых межпредметных понятий определяется в ходе разработки основной образовательной программы основного общего образования образовательной организации в зависимости от материально-технического оснащения, кадрового потенциала, используемых методов работы и образовательных технологий.

В соответствии ФГОС ООО выделяются три группы универсальных учебных действий: регулятивные, познавательные, коммуникативные.

Регулятивные УУД

- 1. Умение самостоятельно определять цели обучения, ставить и формулировать новые задачи в учебе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности. Обучающийся сможет:
- анализировать существующие и планировать будущие образовательные результаты;
 - идентифицировать собственные проблемы и определять главную проблему;
- выдвигать версии решения проблемы, формулировать гипотезы, предвосхищать конечный результат;

- ставить цель деятельности на основе определенной проблемы и существующих возможностей;
- формулировать учебные задачи как шаги достижения поставленной цели деятельности;
- обосновывать целевые ориентиры и приоритеты ссылками на ценности, указывая и обосновывая логическую последовательность шагов.
- 2. Умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач. Обучающийся сможет:
- определять необходимые действие(я) в соответствии с учебной и познавательной задачей и составлять алгоритм их выполнения;
- обосновывать и осуществлять выбор наиболее эффективных способов решения учебных и познавательных задач;
- определять/находить, в том числе из предложенных вариантов, условия для выполнения учебной и познавательной задачи;
- выстраивать жизненные планы на краткосрочное будущее (заявлять целевые ориентиры, ставить адекватные им задачи и предлагать действия, указывая и обосновывая логическую последовательность шагов);
- выбирать из предложенных вариантов и самостоятельно искать средства/ресурсы для решения задачи/достижения цели;
- составлять план решения проблемы (выполнения проекта, проведения исследования);
- определять потенциальные затруднения при решении учебной и познавательной задачи и находить средства для их устранения;
- описывать свой опыт, оформляя его для передачи другим людям в виде технологии решения практических задач определенного класса;
- планировать и корректировать свою индивидуальную образовательную траекторию.
- 3. Умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией. Обучающийся сможет:
- определять совместно с педагогом и сверстниками критерии планируемых результатов и критерии оценки своей учебной деятельности;
- систематизировать (в том числе выбирать приоритетные) критерии планируемых результатов и оценки своей деятельности;
- отбирать инструменты для оценивания своей деятельности, осуществлять самоконтроль своей деятельности в рамках предложенных условий и требований;
- оценивать свою деятельность, аргументируя причины достижения или отсутствия планируемого результата;
- находить достаточные средства для выполнения учебных действий в изменяющейся ситуации и/или при отсутствии планируемого результата;
- работая по своему плану, вносить коррективы в текущую деятельность на основе анализа изменений ситуации для получения запланированных характеристик продукта/результата;
- устанавливать связь между полученными характеристиками продукта и характеристиками процесса деятельности и по завершении деятельности предлагать изменение

характеристик процесса для получения улучшенных характеристик продукта;

- сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно.
- 4. Умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения. Обучающийся сможет:
 - определять критерии правильности (корректности) выполнения учебной задачи;
- анализировать и обосновывать применение соответствующего инструментария для выполнения учебной задачи;
- свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся средств, различая результат и способы действий;
- оценивать продукт своей деятельности по заданным и/или самостоятельно определенным критериям в соответствии с целью деятельности;
- обосновывать достижимость цели выбранным способом на основе оценки своих внутренних ресурсов и доступных внешних ресурсов;
- фиксировать и анализировать динамику собственных образовательных результатов.
- 5. Владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной. Обучающийся сможет:
- наблюдать и анализировать собственную учебную и познавательную деятельность и деятельность других обучающихся в процессе взаимопроверки;
- соотносить реальные и планируемые результаты индивидуальной образовательной деятельности и делать выводы;
 - принимать решение в учебной ситуации и нести за него ответственность;
- самостоятельно определять причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;
- ретроспективно определять, какие действия по решению учебной задачи или параметры этих действий привели к получению имеющегося продукта учебной деятельности:
- демонстрировать приемы регуляции психофизиологических/ эмоциональных состояний для достижения эффекта успокоения (устранения эмоциональной напряженности), эффекта восстановления (ослабления проявлений утомления), эффекта активизации (повышения психофизиологической реактивности).

Познавательные УУД

- 6. Умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное, по аналогии) и делать выводы. Обучающийся сможет:
- подбирать слова, соподчиненные ключевому слову, определяющие его признаки и свойства;
- выстраивать логическую цепочку, состоящую из ключевого слова и соподчиненных ему слов;
- выделять общий признак двух или нескольких предметов или явлений и объяснять их сходство;

- объединять предметы и явления в группы по определенным признакам, сравнивать, классифицировать и обобщать факты и явления;
 - выделять явление из общего ряда других явлений;
- определять обстоятельства, которые предшествовали возникновению связи между явлениями, из этих обстоятельств выделять определяющие, способные быть причиной данного явления, выявлять причины и следствия явлений;
- строить рассуждение от общих закономерностей к частным явлениям и от частных явлений к общим закономерностям;
- строить рассуждение на основе сравнения предметов и явлений, выделяя при этом общие признаки;
- излагать полученную информацию, интерпретируя ее в контексте решаемой задачи;
- самостоятельно указывать на информацию, нуждающуюся в проверке, предлагать и применять способ проверки достоверности информации;
 - вербализовать эмоциональное впечатление, оказанное на него источником;
- объяснять явления, процессы, связи и отношения, выявляемые в ходе познавательной и исследовательской деятельности (приводить объяснение с изменением формы представления; объяснять, детализируя или обобщая; объяснять с заданной точки зрения);
- выявлять и называть причины события, явления, в том числе возможные / наиболее вероятные причины, возможные последствия заданной причины, самостоятельно осуществляя причинно-следственный анализ;
- делать вывод на основе критического анализа разных точек зрения, подтверждать вывод собственной аргументацией или самостоятельно полученными данными.
- 7. Умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач. Обучающийся сможет:
 - обозначать символом и знаком предмет и/или явление;
- определять логические связи между предметами и/или явлениями, обозначать данные логические связи с помощью знаков в схеме;
 - создавать абстрактный или реальный образ предмета и/или явления;
 - строить модель/схему на основе условий задачи и/или способа ее решения;
- создавать вербальные, вещественные и информационные модели с выделением существенных характеристик объекта для определения способа решения задачи в соответствии с ситуацией;
- преобразовывать модели с целью выявления общих законов, определяющих данную предметную область;
- переводить сложную по составу (многоаспектную) информацию из графического или формализованного (символьного) представления в текстовое, и наоборот;
- строить схему, алгоритм действия, исправлять или восстанавливать неизвестный ранее алгоритм на основе имеющегося знания об объекте, к которому применяется алгоритм;
 - строить доказательство: прямое, косвенное, от противного;
- анализировать/рефлексировать опыт разработки и реализации учебного проекта, исследования (теоретического, эмпирического) на основе предложенной проблемной ситуации, поставленной цели и/или заданных критериев оценки продукта/результата.
 - 8. Смысловое чтение. Обучающийся сможет:
 - находить в тексте требуемую информацию (в соответствии с целями своей дея-

тельности);

- ориентироваться в содержании текста, понимать целостный смысл текста, структурировать текст;
 - устанавливать взаимосвязь описанных в тексте событий, явлений, процессов;
 - резюмировать главную идею текста;
- преобразовывать текст, «переводя» его в другую модальность, интерпретировать текст (художественный и нехудожественный учебный, научно-популярный, информационный, текст non-fiction);
 - критически оценивать содержание и форму текста.
- 9. Формирование и развитие экологического мышления, умение применять его в познавательной, коммуникативной, социальной практике и профессиональной ориентации. Обучающийся сможет:
 - определять свое отношение к природной среде;
- анализировать влияние экологических факторов на среду обитания живых организмов:
 - проводить причинный и вероятностный анализ экологических ситуаций;
- прогнозировать изменения ситуации при смене действия одного фактора на действие другого фактора;
- распространять экологические знания и участвовать в практических делах по защите окружающей среды;
- выражать свое отношение к природе через рисунки, сочинения, модели, проектные работы.
- 10. Развитие мотивации к овладению культурой активного использования словарей и других поисковых систем. Обучающийся сможет:
 - определять необходимые ключевые поисковые слова и запросы;
 - осуществлять взаимодействие с электронными поисковыми системами, словарями;
- формировать множественную выборку из поисковых источников для объективизации результатов поиска;
 - соотносить полученные результаты поиска со своей деятельностью.

Коммуникативные УУД

- 11. Умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение. Обучающийся сможет:
 - определять возможные роли в совместной деятельности;
 - играть определенную роль в совместной деятельности;
- принимать позицию собеседника, понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
- определять свои действия и действия партнера, которые способствовали или препятствовали продуктивной коммуникации;
- строить позитивные отношения в процессе учебной и познавательной деятельности;

- корректно и аргументированно отстаивать свою точку зрения, в дискуссии уметь выдвигать контраргументы, перефразировать свою мысль (владение механизмом эквивалентных замен);
- критически относиться к собственному мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
 - предлагать альтернативное решение в конфликтной ситуации;
 - выделять общую точку зрения в дискуссии;
- договариваться о правилах и вопросах для обсуждения в соответствии с поставленной перед группой задачей;
- организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т. д.);
- устранять в рамках диалога разрывы в коммуникации, обусловленные непониманием/неприятием со стороны собеседника задачи, формы или содержания диалога.
- 12. Умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей для планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью. Обучающийся сможет:
- определять задачу коммуникации и в соответствии с ней отбирать речевые средства:
- отбирать и использовать речевые средства в процессе коммуникации с другими людьми (диалог в паре, в малой группе и т. д.);
- представлять в устной или письменной форме развернутый план собственной деятельности;
- соблюдать нормы публичной речи, регламент в монологе и дискуссии в соответствии с коммуникативной задачей;
- высказывать и обосновывать мнение (суждение) и запрашивать мнение партнера в рамках диалога;
 - принимать решение в ходе диалога и согласовывать его с собеседником;
- создавать письменные «клишированные» и оригинальные тексты с использованием необходимых речевых средств;
- использовать вербальные средства (средства логической связи) для выделения смысловых блоков своего выступления;
- использовать невербальные средства или наглядные материалы, подготовленные/отобранные под руководством учителя;
- делать оценочный вывод о достижении цели коммуникации непосредственно после завершения коммуникативного контакта и обосновывать его.
- 13. Формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ). Обучающийся сможет:
- целенаправленно искать и использовать информационные ресурсы, необходимые для решения учебных и практических задач с помощью средств ИКТ;
- выбирать, строить и использовать адекватную информационную модель для передачи своих мыслей средствами естественных и формальных языков в соответствии с условиями коммуникации;
- выделять информационный аспект задачи, оперировать данными, использовать модель решения задачи;
- использовать компьютерные технологии (включая выбор адекватных задаче инструментальных программно-аппаратных средств и сервисов) для решения информацион-

ных и коммуникационных учебных задач, в том числе: вычисление, написание писем, сочинений, докладов, рефератов, создание презентаций и др.;

- использовать информацию с учетом этических и правовых норм;
- создавать информационные ресурсы разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности.

Предметные результаты

Введение. Информация и информационные процессы

Выпускникнаучится:

- различать содержание основных понятий предмета: информатика, информация, информационный процесс, информационная система, информационная модель и др;
- различать виды информации по способам её восприятия человеком и по способам её представления на материальных носителях;
- раскрывать общие закономерности протекания информационных процессов в системах различной природы;
- приводитьпримеры информационных процессов процессов, связанные схранением, преобразованием ипередачей данных в живой природеит ехнике;
 - классифицировать средства ИКТ в соответствии с кругом выполняемых задач;
- узнает о назначенииосновных компонентов компьютера (процессора, оперативной памяти, в нешней энергоне зависимой памяти, устройств в вода-вывода), характеристиках этих устройств;
- определять качественные и количественные характеристики компонентов компьютера;
- узнает о истории и тенденциях развития компьютеров; о том как можно улучшить характеристики компьютеров;
 - узнает о том какие задачи решаются с помощью суперкомпьютеров.

Выпускникполучитвозможность:

- осознано подходить к выбору ИКТ средств для своих учебных и иных целей;
- узнать о физических ограничениях на значения характеристик компьютера.

Математические основы информатики

Выпускникнаучится:

- описыватьразмердвоичных текстов, используя термины «бит», «байт» и производные от них; использовать термины, описывающие скорость передачи данных, оценивать время передачи данных;
 - кодироватьидекодироватьтекстыпозаданнойкодовой таблице;
- оперировать понятиями, связанными с передачей данных (источники приемник данных: канал связи, скорость передачи данных по каналу связи, пропускная способность канала связи);
- определятьминимальнуюдлинукодового словапозаданным алфавиту кодируемого текстаикодовомуалфавиту(длякодовогоалфавитаиз2, Зили4символов);
- определять длину кодовой последовательностипо длине исходного текстаи кодовойтаблицеравномерного кода;

- записывать в двоичной системе целые числа от 0 до 1024; переводить заданноенатуральное числоиздесятичной записив двоичную издвоичной вдесятичную; сравнивать числавдвоичной записи; складывать ивычитать числа, записанные вдвоичной системесчисления;
- записыватьлогические выражения составленные с помощью операций «и», «или», «не» и скобок, определять истинность такого составного высказывания, если известны значения истинностивходящихв негоэлементарныхвысказываний;
- определять количество элементов в множествах, полученных из двух или трех базовых множеств с помощью операций объединения, пересеченияи дополнения;
- использоватьтерминологию, связанную сграфами (вершина, ребро, путь, длинаребраипути), деревьями (корень, лист, высотадерева) и списками (первый элемент, последний элемент, предыдущий элемент, мент; вставка, удаление и замена элемента);
- описыватьграф с помощью матрицы смежности с указанием длин ребер(знаниетермина «матрица смежности» необязательно);
- познакомиться с двоичным кодированием текстов и с наиболее употребительнымисовременнымикодами;
- использоватьосновные способы графического представления числовой информации, (графики, диаграммы).

Выпускникполучитвозможность:

- познакомитьсяспримерамиматематическихмоделейииспользования компьютеров прииханализе; понятьсходстваиразличиямежду математической модельюобъектаи-егонатурноймоделью, между математическоймодельюобъекта/явленияи словеснымописанием:
- узнатьотом, чтолюбые дискретные данные можноописать, используя алфавит, содержащий толькод васим вола, например, 0 и 1;
- познакомиться с тем, как информация (данные) представляется в современных-компьютерах и робототехнических системах;
- познакомитьсяспримерами использованияграфов, деревьевисписков приописанииреальных объектови процессов;
- ознакомиться с влиянием ошибок измерений и вычислений на выполнение алгоритмов управления реальными объектами (на примере учебных автономных роботов);
- узнать о наличии кодов, которые исправляют ошибки искажения, возникающие при передаче информации.

Алгоритмыиэлементыпрограммирования

Выпускникнаучится:

- составлять алгоритмы для решения учебных задач различных типов;
- выражать алгоритм решения задачи различными способами (словесным, графическим, в том числе и в виде блок-схемы, с помощью формальных языков и др.);
- определять наиболее оптимальный способ выражения алгоритма для решения конкретных задач (словесный, графический, с помощью формальных языков);
 - определять результат выполнения заданного алгоритма или его фрагмента;
- использоватьтермины «исполнитель», «алгоритм», «программа», а такжепониматьразницумеждуупотреблением этихтерминов обыденнойречиивинформатике;
- выполнятьбез использования компьютера («вручную») несложные алгоритмыуправленияисполнителямиианализачисловыхитекстовых дан-

ных, записанные наконкретномязы кпрограммирования с использованием основных управляющих конструкций последовательного программирования (линейная программа, ветвление, повторение, вспомогательные алгоритмы);

- составлятьнесложныеалгоритмыуправленияисполнителямии анализа числовыхитекстовыхданных сиспользованием основных управляющих конструкций последовательного программирования и записывать их в виде программ на выбранном языке программирования; выполнять этипрограммынакомпьютере;
- использоватьвеличины (переменные) различных типов, табличные величины (массивы), атакжевыражения, составленные изэтих величин; использовать оператор присваивания;
- анализироватьпредложенный алгоритм, например, определять какие результатывозможны призаданном множествей сходных значений;
 - использоватьлогическиезначения, операциии выражения сними;
- записыватьнавыбранномязыкепрограммированияарифметическиеи логическиевыраженияи вычислятьих значения.

Выпускникполучитвозможность:

- познакомитьсясиспользованиемвпрограммахстроковыхвеличинис операциямисо-строковымивеличинами;
 - создаватьпрограммы для решения задач, возникающих в процессе учебыивнеее;
 - познакомиться с задачами обработки данных и алгоритмами их решения;
- познакомиться с понятием «управление», с примерами того, как компьютеруправляетразличными системами(роботы, летательные и космические аппараты, станки, оросительные системы, движущиеся моделии др.);
- познакомиться с учебной средой составления программ управления автономными роботами и разобрать примеры алгоритмов управления, разработанными в этой среде.

Использованиепрограммныхсистемисервисов

Выпускникнаучится:

- классифицировать файлы по типу и иным параметрам;
- выполнять основные операции с файлами (создавать, сохранять, редактировать, удалять, архивировать, «распаковывать» архивные файлы);
 - разбираться в иерархической структуре файловой системы;
 - осуществлять поиск файлов средствами операционной системы;
- использоватьдинамические (электронные) таблицы, в том числе формулысис-пользованиемабсолютной, относительной исмешанной адресации, выделение диапазона таблицыи упорядочивание (сортировку) егоэлементов; построение диаграмм (круговой и столбчатой);
- использоватьтабличные(реляционные)базыданных,выполнятьотбор строктаблицы,удовлетворяющихопределенномуусловию;
 - анализировать доменные именакомпьютеровиа дреса документов в Интернете;
- проводитьпоиск информации в сети Интернет по запросам с использованиемлогическихопераций.

Выпускник овладеет (как результат применения программных систем и интернет-сервисоввданномкурсеи вовсемобразовательномпроцессе):

- навыкамиработыскомпьютером;знаниями,умениямиинавыками, достаточнымидляработыс различнымивидамипрограммныхсистеми интернет-сервисов (файловыеменеджеры,текстовыередакторы, электронные таблицы,браузеры,поисковыесистемы,словари, электронныеэнциклопедии); умениемописыватьработуэтихсистеми сервисовс использованиемсоответствующейтерминологии;
- различнымиформами представления данных (таблицы, диаграммы, графикии т.д.);
- приемамибезопасной организации своего личного пространства данных сиспользованием индивидуальных накопителейданных, интернет-сервисови т. п.;
 - основамисоблюдениянорминформационной этики и права;
- познакомится с программными средствами для работы с аудиовизуальнымиданнымиисоответствующимпонятийнымаппаратом;
 - узнает о дискретном представлении аудио-визуальных данных.

Выпускник получит возможность (в данном курсе и иной учебной деятельности):

- узнать о данных от датчиков, например, датчиков роботизированных устройств;
- практиковаться в использовании основных видов прикладного программного обеспечения(редакторытекстов, электронныетаблицы, браузерыи др.);
- познакомиться с примерами использования математического моделированиявсовременноммире;
- познакомитьсяспринципами функционированияИнтернетаисетевого взаимодействиямеждукомпьютерами,сметодамипоискавИнтернете;
- познакомитьсяс постановкойвопроса о том, насколько достоверна полученнаяинформация, подкреплена лионадоказательствами подлинности(пример:наличиеэлектроннойподписи);познакомитьсяс возможнымиподходамикоценкедостоверностиинформации(пример: сравнениеданныхизразныхисточников);
- узнать о том, что в сфере информатики и ИКТ существуютмеждународные и национальные стандарты;
 - узнать о структуре современных компьютеров и назначении их элементов;
 - получитьпредставление об истории и тенденциях развития ИКТ;
 - познакомитьсяспримерамииспользованияИКТв современноммире;
- получить представления о роботизированных устройствах и их использовании на производстве и в научных исследованиях.

2. Содержание учебного предмета.

Программа разработана с целью реализации инженерного образования на уровне основного общего образования при изучении учебного предмета «Информатика».

При реализации программыучебногопредмета«Информатика» у учащихся формируется информационнаяи алгоритмическаякультура;уменияформациинструктурирования информации, способпредставления данных всоответствиис поставленной задачей-таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средствобработки данных; представления о компьютере как универсальном устройстве обработки информации; представления об основных изучаемых понятиях: информация, алгоритм, модель-и ихсвойствах; развивается алгоритмическое мышление, необходимое для профессиональной деятельностивсовременномобществе; формируются представления о том, как понятия и конструкции информатики

применяются в реальном мире, о роли информационных технологий и роботизированных устройств в жизни людей, промышленности и научных исследованиях;навыков и умений безопасного и целесообразного поведенияприработескомпьютернымипрограммами-ивс е т и Интернет, умениясоблюдатьнормыинформационной этики права.

7 класс

Ввеление

Информация и информационные процессы

Информация – одно из основных обобщающих понятий современной науки.

Различные аспекты слова «информация»: информация как данные, которые могут быть обработаны автоматизированной системой и информация как сведения, предназначенные для восприятия человеком.

Примерыданных: тексты, числа. Дискретность данных. Анализ данных. Возможность описания непрерывных объектов и процессов с помощью дискретных данных.

Информационные процессы-процессы, связанные с хранением, преобразованием и передачей данных.

Компьютер-универсальное устройство обработки данных

Архитектура компьютера: процессор, оперативная память, внешняя энергонезависимая память, устройстваввода-вывода; их количественные характеристики.

Компьютеры, встроенные в технические устройства и производственные комплексы. Роботизированные производства, аддитивные технологии (3D-принтеры).

Программное обеспечение компьютера.

Носители информации, используемые в ИКТ. История и перспективы развития. Представление об объемах данных и скоростях доступа, характерных для различных видов носителей. *Носители информации в живой природе*.

История и тенденции развития компьютеров, улучшение характеристик компьютеров. Суперкомпьютеры.

Физические ограничения на значения характеристик компьютеров.

Параллельные вычисления.

Техника безопасности и правила работы на компьютере.

Математические основы информатики Тексты и кодирование

Символ. Алфавит – конечноемножествосимволов. Текст – конечная последовательность символов данного алфавита. Количество различных текстовданной длиныв данномалфавите.

Разнообразие языков и алфавитов. Естественные и формальные языки. Алфавит текстов на русском языке.

Кодирование символов одного алфавита с помощью кодовых слов в другом алфавите; кодовая таблица, декодирование.

Единицы измерения длины двоичных текстов: бит, байт, Килобайт и т. д. Количество информации, содержащееся в сообщении.

Подход А.Н.Колмогорова к определению количества информации.

Зависимость количества кодовых комбинаций от разрядности кода. *Код ASCII*. Кодировки кириллицы. Примеры кодирования букв национальных алфавитов. Представление о стандарте Unicode. *Таблицы кодировки с алфавитом, отличным от двоичного*.

Искажение информации при передаче. Коды, исправляющие ошибки. Возможность однозначного декодирования для кодов с различной длиной кодовых слов.

Дискретизация

Измерение и дискретизация. Общее представление о цифровом представлении аудиовизуальных и других непрерывных данных.

Кодирование цвета. Цветовые модели. Модели RGB и CMYK. *Модели HSB и CMY*. Глубина кодирования. Знакомство с растровой и векторной графикой.

Кодирование звука. Разрядность и частота записи. Количество каналовзаписи.

Оценка количественных параметров, связанных с представлением и хранением изображений и звуковых файлов.

Файловая система

Принципы построения файловых систем. Каталог(директория). Основные операции при работе с файлами: создание, редактирование, копирование, перемещение, удаление. Типы файлов.

Характерные размеры файлов различных типов(страница печатного текста, полный текст романа «Евгений Онегин», минутный видеоклип, полуторачасовой фильм, файлданных космических наблюдений, файл промежуточных данных при математическом моделировании сложных физических процессов и др.).

Архивирование и разархивирование.

Файловый менеджер.

Поиск в файловой системе.

Подготовка текстов и демонстрационных материалов

Текстовые документы и их структурные элементы (страница, абзац, строка, слово, символ).

Текстовый процессор — инструмент создания, редактирования и форматирования текстов. Свойства страницы, абзаца, символа. Стилевое форматирование.

Включение в текстовый документ списков, таблиц, и графических объектов. Включение в текстовый документ диаграмм, формул, нумерации страниц, колонтитулов, ссылок и др. *История изменений*.

Проверка правописания, словари.

Инструменты ввода текста с использованием сканера, программ распознавания, расшифровки устной речи. Компьютерный перевод.

Понятие о системе стандартов по информации, библиотечному и издательскому делу. Деловая переписка, учебная публикация, коллективная работа. Реферат и аннотаиия.

Подготовка компьютерных презентаций. Включение в презентацию аудиовизуальных объектов.

Знакомство с графическими редакторами. Операции редактирования графических объектов: изменение размера, сжатие изображения; обрезка, поворот, отражение, работа с областями (выделение, копирование, заливка цветом),коррекция цвета, яркости и контрастности. Знакомство с обработкой фотографий. Геометрические и стилевые преобразования.

Ввод изображений с использованием различных цифровых устройств (цифровых фотоаппаратов и микроскопов, видеокамер, сканеров и т.д.).

Средства компьютерного проектирования. Чертежи и работа с ними. Базовые операции: выделение, объединение, геометрические преобразования фрагментов и компонентов. Диаграммы, планы, карты.

8 класс

Математические основы информатики

Двоичный алфавит. Представление данных в компьютере как текстов в двоичном алфавите.

Двоичные коды с фиксированной длиной кодового слова. Разрядность кода –длина кодового слова. Примеры двоичных кодов с разрядностью 8,16, 32.

Системы счисления

Позиционные и непозиционные системы счисления. Примеры представления чисел в позиционных системах счисления.

Основание системы счисления. Алфавит (множество цифр) системы счисления. Количество цифр, используемых в системе счисления с заданным основанием. Краткая и развернутая формы записи чисел в позиционных системах счисления.

Двоичная система счисления, запись целых чисел в пределах от 0 до 1024. Перевод натуральных чисел из десятичной системы счисления в двоичную и из двоичной в десятичную.

Восьмеричная и шестнадцатеричная системы счисления. Перевод натуральных чисел из десятичной системы счисления в восьмеричную, шестнадцатеричную и обратно.

Перевод натуральных чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную и обратно.

Арифметические действия в системах счисления.

Элементы комбинаторики, теории множеств и математической логики

Расчет количества вариантов: формулы перемножения и сложения количества вариантов. Количество текстов данной длины в данном алфавите.

Множество. Определение количества элементов во множествах, полученных из двух или трех базовых множеств с помощью операций объединения, пересечения и дополнения.

Высказывания. Простые и сложные высказывания. Диаграммы Эйлера-Венна. Логические значения высказываний. Логические выражения. Логические операции: «и» (коньюнкция, логическое умножение), «или» (дизьюнкция, логическое сложение), «не» (логическое отрицание). Правила записи логических выражений. Приоритеты логических операций.

Таблицы истинности. Построение таблиц истинности для логических выражений.

Логические операции следования (импликация) и равносильности (эквивалентность). Свойства логических операций. Законы алгебры логики. Использование таблиц истинности для доказательства законов алгебры логики. Логические элементы. Схемы логических элементов и их физическая (электронная) реализация. Знакомство с логическими основами компьютера.

Алгоритмы и элементы программирования Исполнители и алгоритмы. Управление исполнителями

Исполнители. Состояния, возможные обстановки и система команд исполнителя; команды-приказы и команды-запросы; отказ исполнителя. Необходимость формального описания исполнителя. Ручное управление исполнителем.

Алгоритм как план управления исполнителем (исполнителями). Алгоритмический язык (язык программирования) —формальный язык для записи алгоритмов. Программа—запись алгоритма на конкретном алгоритмическом языке. Компьютер—автоматическое устройство, способное управлять по заранее составленной программе исполнителями, выполняющими команды. Программное управление исполнителем. Программное управление самодвижущимся роботом.

Словесное описание алгоритмов. Описание алгоритма с помощью блок-схем. Отличие словесного описания алгоритма, от описания на формальном алгоритмическом языке.

Системы программирования. Средства создания и выполнения программ.

Понятие об этапах разработки программ и приемах отладки программ.

Алгоритмические конструкции

Конструкция «следование». Линейный алгоритм. Ограниченность линейных алгоритмов: невозможность предусмотреть зависимость последовательности выполняемых действий от исходных данных.

Конструкция «ветвление». Условный оператор: полная и неполная формы.

Выполнение и невыполнения условия (истинность и ложность высказывания). Простые и составные условия. Запись составных условий.

Конструкция «повторения»:циклы с заданным числом повторений, с условием выполнения, с переменной цикла. Проверка условия выполнения цикла до начала выполнения тела цикла и после выполнения тела цикла: постусловие и предусловие цикла. Инвариант цикла.

Запись алгоритмических конструкций в выбранном языке программирования.

Примеры записи команд ветвления и повторения и других конструкций в различных алгоритмических языках.

Разработка алгоритмов и программ

Оператор присваивания. Представление о структурах данных.

Константы и переменные. Переменная: имя и значение. Типы переменных: целые, вещественные, *символьные*, *строковые*, *логические*. Табличные величины (массивы).Примеры задач обработки данных:

- нахождение минимального и максимального числа из двух, трех, четырех данных чисел;
 - нахождение всех корней заданного квадратного уравнения;
 - нахождение минимального (максимального) элемента массива.

Знакомство с алгоритмами решения этих задач. Реализации этих алгоритмов в выбранной среде программирования.

Составление алгоритмов и программ по управлению исполнителями Робот, Черепашка, Чертежник и др.

Знакомство с постановками более сложных задач обработки данных и алгоритмами их решения: обработка целых чисел, представленных записями в десятичной и двоичной системах счисления, нахождение наибольшего общего делителя(алгоритм Евклида).

Понятие об этапах разработки программ: составление требований к программе, выбор алгоритма и его реализация в виде программы на выбранном алгоритмическом языке, отладка программы с помощью выбранной системы программирования, тестирование.

Простейшие приемы диалоговой отладки программ (выбор точки останова, пошаговое выполнение, просмотр значений величин, отладочный вывод).

Знакомство с документированием программ. Составление описание программы пообразиу.

9 класс

Списки, графы, деревья

Список. Первый элемент, последний элемент, предыдущий элемент, следующий элемент. Вставка, удаление и замена элемента.

Граф. Вершина, ребро, путь. Ориентированные и неориентированные графы. Начальная вершина(источник) и конечная вершина(сток)в ориентированном графе. Длина(вес) ребра и пути. Понятие минимального пути. Матрица смежности графа (с длина ми ребер).

Дерево. Корень, лист, вершина (узел).Предшествующая вершина, последующие вершины. Поддерево. Высота дерева. *Бинарное дерево*. Генеалогическое дерево.

Алгоритмы и элементы программирования

Управление. Сигнал. Обратная связь. Примеры: компьютер и управляемый имисполнитель (в том числе робот); компьютер, получающий сигналы от цифровых датчиков в ходе наблюдений и экспериментов, и управляющий реальными (в том числе движущимися) устройствами.

Разработка алгоритмовипрограмм

Табличныевеличины (массивы). Одномерные массивы. *Двумерные массивы*. Примерызадачобработкиданных:

- заполнениечисловогомассивавсоответствиисформулойили путемвводачисел;
- нахождениесуммы элементов данной конечной числовой последовательностиилимассива;
 - нахождениеминимального (максимального) элементамассива.

Знакомствосалгоритмами решенияэтихзадач.Реализацииэтихалгоритмов ввыбраннойсредепрограммирования.

Составлениеалгоритмови программпоуправлениюисполнителями Робот, Черепашка, Чертежник и др.

Знакомство с постановками более сложных задач обработки данных и алгоритмами их решения: сортировка массива, выполнение поэлементных операций с массивами; Понятие об этапах разработки программ: составление требований к программе, выбор алгоритма и его реализация в виде программы на выбранном алгоритмическом языке, отладка программы с помощью выбранной системы программирования, тестирование.

Анализ алгоритмов

Сложность вычисления: количество выполненных операций, размер используемой памяти; их зависимость от размера исходных данных. Примеры коротких программ, выполняющих много шагов по обработке небольшого объема данных; примеры коротких программ, выполняющих обработку большого объема данных.

Определение возможных результатов работы алгоритма при данном множестве входных данных; определение возможных входных данных, приводящих к данному результату. Примеры описания объектов и процессов с помощью набора числовых характе-

ристик, а также зависимостей между этим их характеристиками, выражаемыми с помощью формул.

Робототехника

Робототехника — наука о разработке и использовании автоматизированных технических систем. Автономные роботы и автоматизированные комплексы. Микроконтроллер. Сигнал. Обратная связь: получениесигналовот цифровыхдатчиков (касания, расстояния, света, звука и др.

Примеры роботизированных систем (система управления движением в транспортной системе, сварочная линия автозавода, автоматизированное управление отопления дома, автономная система управления транспортным средством и т.п.).

Автономные движущиеся роботы. Исполнительные устройства, датчики. Система команд робота. Конструирование робота. Моделирование робота парой: исполнитель команд и устройство управления. Ручное и программное управление роботами.

Пример учебной среды разработки программ управления движущимися роботами. Алгоритмы управления движущимися роботами. Реализация алгоритмов "движение до препятствия", "следование вдоль линии" и т.п.

Анализ алгоритмов действий роботов. Испытание механизма робота, отладка программы управления роботом Влияние ошибок измерений и вычислений на выполнение алгоритмов управления роботом.

Математическое моделирование

Понятие математической модели. Задачи, решаемые с помощью математического (компьютерного) моделирования. Отличие математической модели от натурной модели от словесного (литературного) описания объекта . Использование компьютеров при работе с математическими моделями.

Компьютерные эксперименты.

Примеры использования математических (компьютерных) моделей при решении научно-технических задач. Представление о цикле моделирования: построение математической модели, ее программная реализация, проверка на простых примерах (тестирование), проведение компьютерного эксперимента, анализ его результатов, уточнение модели.

Использование программных систем и сервисов

Электронные (динамические) таблицы

Электронные (динамические) таблицы. Формулы с использованием абсолютной, относительной и смешанной адресации; преобразование формул при копировании. Выделение диапазона таблицы и упорядочивание (сортировка) его элементов; построение графиков и диаграмм.

Базы данных. Поиск информации

Базы данных. Таблица как представление отношения. Поиск данных в готовой базе. *Связи между таблицами*.

Поискинформациив сети Интернет. Средстваиметодикапоиска информации.Построениезапросов;браузеры.Компьютерные энциклопедии исловари.Компьютерныекартыидругиесправочныесистемы.Поисковые машины.

Работа в информационном пространстве. Информационнокоммуникационные технологии.

Компьютерные сети. Интернет. Адресация в сети Интернет. Доменная система имен.Сайт.Сетевое хранение данных. Большие данные в природе и технике(геномные данные, результаты физических экспериментов, Интернет-данные, в частности, данные социальных сетей).Технологии их обработки их ранения.

Виды деятельности в сети Интернет. Интернет-сервисы: почтовая служба; справочные службы (карты, расписания ит. п.),поисковые службы,службы обновленияпрограммногообеспеченияидр.

Компьютерные вирусы и другие вредоносные программы; защита от них.

Приемы, повышающие безопасность работы в сети Интернет. *Проблема подлинности полученной информации*. Электронная подпись, сертифицированные сайты и документы. Методы индивидуального и коллективного размещения новой информации в сети Интернет. Взаимодействие на основе компьютерных сетей: электронная почта, чат, форум, телеконференция и др.

Гигиенические, эргономические и технические условия эксплуатации средств ИКТ. Экономические, правовые и этические аспекты их использования. Личная информация, средства ее защиты. Организация личного информационного пространства.

Основные этапы и тенденции развития ИКТ. Стандарты в сфере информатики и ИКТ. Стандартизация и стандарты в сфере информатики и ИКТ докомпьютерной эры (запись чисел, алфавитов национальных языков и др.) и компьютерной эры (языки программирования, адресация в сети Интернет и др.).

Тематическое планирование (базовый уровень)

7 класс (35 часов)

№	Тема	Количество часов
ПП		
1.	Введение в предмет	1
2.	Информация и информационные процессы	8
3.	Компьютер как универсальное устройство	7
	обработки информации.	
4.	Обработка графической информации	4
5.	Обработка текстовой информации	9
6.	Мультимедиа	4
7.	Повторение	1
	Итого:	34

8 класс (36 часов)

No	Тема	Количество часов
ПП		
1.	Техника безопасности в кабинете информа-	13
	тики. Математические основы информатики	
2.	Основы алгоритмизации	10
3.	Начала программирования	10
4.	Повторение	1
	Итого:	34

9 класс (34 часа)

No	Тема	Количество часов
ПП		
1.	Техника безопасности в кабинете информатики. Моделирование и формализация	9
2.	Алгоритмизация п программирование	8
3.	Обработка числовой информации	6
4.	Коммуникационные технологии	10
5.	Повторение	1
	Итого:	34

Тематическое планирование

(углубленный уровень)

(с учетом Примерной основной образовательной программы основного общего образования, одобренной решением федерального учебно-методического объединения по общему образованию (протокол от 8 апреля 2015 г. № 1/15) и авторской программы под редакцией Босовой Л.Л. «Информатика 7-9 класс», М: БИНОМ. Лаборатория знаний, 2016 г)

7 класс (68 часов)

No	Тема	Количество часов
пп		
1	Введение в предмет	1
2	Информация и информационные процессы	15
3	Компьютер как универсальное устройство обработки информации.	12

4	Обработка графической информации	12
5	Обработка текстовой информации	14
6	Мультимедиа	8
7	Учебный проект «Информационный бюллетень»	3
8	Повторение	3

Тематическое планирование 8 класс (68 часа)

No	Тема	Количество часов
пп		
1.	Введение	3
2.	Математические основы информатики	24
3.	Основы алгоритмизации	25
4.	Начала программирования	14
5.	Повторение	2

Тематическое планирование 9 класс (68 часов)

No	Тема	Количество часов
пп		
1	Введение	3
2	Моделирование и формализация	12
3	Алгоритмизация п программирование	18
4	Обработка числовой информации	11
5	Коммуникационные технологии	11
6	Повторение	13